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0' = (I / RT)3 [0 - 3(3-r / RT + 2,82 / (RT)2] 
,8 = RTBo - Ao - He/ T' 
'Y = -RTBob + Aoa - RBoc/ T2 
o = RBobc/ T' 

rh,' Beattie-Bridgeman constants A o, a, Bo, b, and e fo~ ~02 
f l ' provided and each s tudent computes the compresslbllaty 

''. '' lOr at 20-atm increments to 300atm atth~ sa~e ter,nperat.ure 
reviously usinIY eqn. (3). ThiS exercise IS pnmanly for the 

~, !> '0 . hi' I I' I '" iI'pose of programming experience; . t e re ahtlv~ YI comp Ic.atec 
, .~~~ions lead to syntactical errors ill parent etlca expreSSIOns, 
t \pl~- . . . ' d 
1, ,,1 otherwIse the program IS s t ralghtI?rw~r . 

Part B. The Van del' \Vaals e.quatlon IS solved for the mo~ar 
· Illme at 100 atm by iterattve methods. Because of ItS 
\" plicity the first of the methods described by Dick 'on~ is used: 
_.IIl' . . ' . h f V F(V) 1'1 ' Van del' Waals equatiun IS wntten m t e orm = ; 

I~ .timate of V is substituted into F (V ), leading to an improved 
:' : IU~ for V. This, in turn, is substituted into F(V), leading to a 
_, ill better approximation, etc. 

This exercise introduces more programming ideas 
:lIld also the whole problem of conv~rgence as wen as 
the meaning of a solution to an equatIOn from a mathe-
IIl:ltical and physical point of vie\\-: . ,. 

_\lthough not discussed in detaIl, the compresSibIlity 
i:tctor computed from eqn. (3) is exact t~ 0 (pa) and the 
rt',;ults differ greatly from the apprOXImate Van der 
Waals computation of exercise (1) . Zmin now occurs 
'It. about the correct pressure, and Z > 1 at 300 atm.S 
\bo, the temperature depe~dence of Z. (obtained by 
intercomparison of various Isotherms) IS much more 
like that predicted by corresponding states. The 
lIgreement with experimental data is poorest near Tn = 
I , of course, (see the figure) and this provides an op
portunity to discuss the reln:tive effectiveness of tem
perature (kinetic energy) and lIlt~rmolecular forces. ~t 
TR = 1.03 the experimental denSity of CO2 ~t 200 atm IS 
O. -:I: g/cm3 and the distinction-or la.ck .of It-betwee.n 
liquids and dense gases, and the contInUIty of states, IS 
forcibly driven home when students actually compute 
-imilar values, as they do in solving the Van der Waals 
"fjuation exactly. Near Tn = 1, .v.dlD ~ 0.5 Videa' at 
high pressures and it becomes obvIOUS wh~ ~qn. (1) is 
,uch a poor appro;...'i.mation under these conditIOns. 

E.z:ercise (3). The study of equations of state is concluded 
" ilh an examination of the Dieterici equation . The critical 
'lIl~UUltS of CO2 are listed but, not the Dieterici a and b. In 
'l"llugy with the Van del' Waals case, the Dieterici equ~tion is 
"'!landed in powers of V-I and truncated at the qua.dratIc te~m, 
:hr "ubstitution V-I = P / R7' is made, and the resultlllg equatIOn 

I upprox) = 1 + (l / RT) (b - a/ RT)P + 
(l/RT)' [O.5(a/ RT)' + b2 - b(a/RT)] P' (4) 

, ,, 'cd to evaluate an approxim:tle c~m'pressi.bility factor at 20-
'm in(,rements, as before. Now that It IS obVIOUS to the studel~t.s 
1. ' 1 Ihe approximations u!<cu iii dcyeloplllg eqn. (4) are qUIte 
".'1', the Dieterici equation is ,;ulvcd exactly for volume at each 

· ' I~"ure by the Newton-Raphson iteration procedureS and this 
· .111(' is used in the exact equ:LI inn 

Z(exact) = 1 + (V/ (V - b»exp(-a/ RTV) (5) 

Th is i~ repeated at 20-atm incr('ments, as before. The values 
I' l' I I VD' , " Z(app,·tlx) alld Z (exact) are tabulated 
.'.1 1!~::;)he(l. Ie e rlCI, . ~ , 

This program is quite daborate and studeuts haye 
" lllP difficulty ill gcttill~ th" whole program to run. 

Ihroutine:-;, whieh would help to keep the logic ,· traight, 
11' " not been int.roduced. The iteration is not com
" ply ~t r:li~htfon\':1rd :·;jn('t' t h" fUllction has singlllar

'" and in ~ome ill s t:\lll' l'~ t ht' iteration would not 
' 1 1· (' l'~C. Again, the ui;;lilll:tioll between n phy~ically 

Compressib ility foetor, Z, as a function of pressure for COz• Top: T = 
373 °K; TR = 1.2 3. Heavy dashed line is experimental behavior from 
"landolt-Bornstein Tables" (see footnote 2). Curve I is the Dieterici 
equation according to eqn. (4) of the text with a = 4.620 atm 12 mole-2, 

b = 0,0463 I mole-I; Curve 2 is computed for the Von der Wools equa
tion without approximation using a = 3.610 atm 12 mole -', b = 0.0429 
I mole -1; Curve 3 is calculated from a fourth-order virial equation using 
the virial coefficients determined by E. G. Butcher and R. S. Dodson, 
Prac. Ray, ·Sac. (london), 277A, 448 (1964); Curve 4 is the virial form 
of th .. Dieterici equation according to eqn. (4) of the text; Curve 5 is the 
Beottie-Bridgeman equation, according to eqn. (2) of the text; Curve 6 
is the virial form of the Von der Wools equation as expressed in eqn. (1) 
of the text; Curve 7 is the virial form of the Beattie-Bridgeman equation 
according to eqn. (3) of the text. Bottom: Curves keyed as above. 
Experimental data for T R = 1.03; insufficient data to permit reliable 
interpolation neor the minimum; Curve 3 computed with virial coefficients 
evaluated ot TR = 1.02. 

meaningful solution, i.e., V > b, and a purely mathe
matical Eolution is emphasized. 

By now the students have become so used to inputting 
data to the computer they are at first confounded when 
the values of a and b are not supplied. (They are to be 
evaluated from the critical constants, a supplemental 
problem \vhich also emphasizes that the computer 
does not supplant analysis.) Some looked for values 
in the literature7 and were even more puzzled to 
find that the quoted values depend on temperature: 
we capitalize on this to discuss temperature-dependent 
vi rial coefficients and suggested that the Beattie
Bridgeman equation be reexamined from this point of 
view. 
- Student response to tIllS aspect of the laboratory 
program has been enthusiastic even though many stu
dents admitted to spending ten or more hour;; on de
bugging some of their program:;. The amount of ma
terial to which the students are exposed is so great that 

• DICKSON, p. 11 3 (see footnote 1). 
& Actually, the approximate, truncated, Bcattie-Bridgeman 

equation, eqn. (3), overcompensates compared to the Vnn del' 
Waals equation. An exact solutioll (from equ. (2») indicale~ 
that Z < 1 for all tempemtlll'es und prCS8l1\'CS in oU\' range (:,tee 
figure ). 

6 DICKSO:>;, p. 114 (,;cc footnotc 1). 
7 P.\HTISGTO:O;, J. H., "An Advltnc'ed Treatise on Phy:;iml 

Chemislry, " John Wiley & HOII:;, [Ill'., New York, 1949, \ '01. 1, 
. p. G '-t, 711. 
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